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ON THE THEORY OF SUBMERGED LAMINAR JETS
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The theory of submerged laminar jets has been treated by
many authors [1-5], This paper presents several new results,

1. Formulation of the problem and the basic equation. The
theory of submerged jet deals with the self-similar flows of a vis-
cous compressible fluid which are due to a singularity, interpreted
as a point source of momentum. These flows satisfy the Navier~
Stokes equations

VO V=—v L4y, divv=0. @D

In a cylindrical system of coordinates (r, v, z), the similar

solutions of (1. 1) must have the form

¥4 v2 z
=y lim), n= (L2

v ¥
v, = Um), v,= ?W'(n), o

The functions vy, v,, p must satisfy the conditions

v,=v,=p=0 4 r=o00 or |z} =00,
v, =0, v, — bounded, du,/dr =0 at r=0, (1.3)
In addition to that, the kinematic momentum of the jet
(2] «
I Wz
I= 2:!3 ro 2dr = 2:tv"‘g o dn (1.4)
0 0
is given. .
Substitution of (1, 2) in (1.1) yields the system
U (W — Uy — U= qll" + 20 + (4 + 3 U” + 307, (1.5)

W (W —nU) —UW =~ + (1 + ) W + 390’ + W, (1.6)

W= U, (1.7)
The conditions (1. 3) yield ‘
U=W=I=0 at f=oco. (1. 8)
Integrating (1, 8) with respect to 0, we obtain
D= +0) W + W — W (W —qU) — 1,0+ (1.9)

We introduce the niew independent variable x and the function y, de-
fined as

z=q( +9)7%, y= (W —nU)(d + 997", (1.10)
Substituting (1. 9) in (1. 5), we obtain
— =2y =0 =Yy (1 — 2% (¥)" —2 () + 2, (L11)

Taking account of (1. 7), we can express the functions W and U in

terms of y
U=—(1—at)y —ay, W =01 — 3% (y — ay), (1. 12)

where the primes denote differentiation with respect to x. Differentia-
ting (1. 11) and dividing by 1 — x% we obtain

— (1 = 2y - day e — Y, (1.13)
Integraring (1. 13) once, we obtain
— (= 2y 2y -2y = = Yy ()~ Gy (114)

Integrating (1. 14) twice more, we obtain
2 — 2y bhay — Y = Cpx? + Cyr + O = Fx)» (1.15)

Equation (1, 15), which is a Riccati's equation, was first ob-
‘tained by N. A. Slezkin [4], Using (1.8), it can be shown that C; = 0
(an analogous proof can be found in {6]). To determine the constant

Cy we compare equations (1. 11), (1.14), and (1.15) at x = 0, This
yields

¢y = C,. (1.16)

It should be noted that this relation between the coefficients was missed
by N. A. Slezkin, who treated all coefficients on the right side of
(1.15) as independent.
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2. Certain properties of Landau’s solution. L. D. Landau’s solu-
tion [1], 'which he interpreted as the discharge of a jet from an infinite-
ly thin tube, is associated with the boundary conditions

y(+1) =0. (2.1)
It can be easily seen that this requires
F(£1)=0. (2.2)

Conditions (2. 2), with equation (1.16), lead to the identities Cy =
= Cy = C4= 0. The solution of (1, 15) is then -

122
ke

' (2.3)

y=2

which has been obtained by Landau.

If one disregards relation (1.16), condition (2.2) is insufficient
to determine the constants Cy, Cj, Cp aind the solution depends then
not only on y, but also on one other arbitrary parameter, Such a solu~
tion, which represents & whole class of jer flows, has been obtained by
V. L. Yatseev [5}. The existence of relation (1.16) makes Landau's
solution unique (V. I. Yatseev shows that of the whole class of solu-
tions in his work only Landau's solution has physical meaning).

The constant ¥ is uniquely related to the momentum of the jet
(y > 1 when I — ),

As has been shown by Landau, inthe case of a "strong™ jet
y=1+(1/2)a?, a < 1 his solution coincides with Schlichting's solu-
tion [2], obtained by the methods of boundary-layer theory.

B4mve

3

8v ‘o .
v, = (a2 - E2p o2 =

’

-
E= -

(2.4)

-Let us analyze lLandau’s solution. Substituting (2.3) in the se-
cond equation in (1.12), we obtain

v 1 T —1
W evicesy ) @9

Let us regard the variable z in (2. 5) as constant and determine those
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values of r for which
oy, 1 9%,

- Bl iy 0.

(2.8)

We introduce the new v...able t = Vi ¥ &% and the notation m = ¥t and
n = y-2, Equation {2. $) becomes then
2mb (m — &) n® + m2(Om? + dm —1)n —

— 3 (5mt —4dm + 1) =0, 2.7
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Equation (2. 7) determines a function n(m), -which has two branches,
corresponding to the two roots of the equation, Since y > landt > 1,
it is interesting to consider the following range of the variables m and
nl=ms= e 0=n=1, Onebranch of n(m) is a monotonic function,
which decreases from 1 to 0 as m increases from 1 to =, The other
branch is not larger than n = 1 only in the range 1= m = ¥5/2. Since
the values of n are very close to 1, it is convenient to introduce the '
variable s = 1 — n., Equation (2. 7) then becomes

2mb (m — 4) s — m2(m — 1) (&m® — 12m?2 — 3m + 1) s +
+ (m — 17 (2m — 3) = 0.

In the range 1 =m = V872 the roots of this equanon can be closely
approximated by

(m —1)(4m3 — 12m? —3m 4 1)
3m3(m — 4) !
(m —1)8(2m2 — 3)
m2(4m3 — 12m2 — 3m 4 1) )

§g ==

Knowing the functions ny and ny, one can construct the functions £,(y)
and Ey(y), which are shown in Fig. 1. Fig. 1 shows that fory < yp
there are three values of £ for every y, and for y > ¥, there is only

" one value, The value ¥, can be calculated by finding the maximum
of sy(m). This yields ¥y =1,000038, Thus, for ¥ > ¥y, the velocity
profile v, has one point of inflexion (whose existence is due to'the
boundary conditions), whereas for y < y,, there appear two more points
of inflexion. This, according to the well known Rayleigh’s theorem, is
a necessary condition for the absolute instability of the flow, as for
Y < ¥y One can expect the jet 10 become turbulent. We introduce the
Reynolds number Re for a circular jet of radius a with a momentum
equal to that of the point source:

a
2 IVt 2 kA
I =2n S Votrdr = nV2a2, Re = - <?) = 8[2—(?“_:—'1)] .
0 .\
Fory =y, we have Re = 1060,

3. On the ejection capacity of the jet. The ejection capacity of
the jet can be characterized by the flow rate

o0
G=2n S ro, dre (3.1)
0
Substituting (2. 4) in (3. 1), we obtain Schlichting’s formula
G = 8nvz, (3.2)

Let us calculate G in its general form. The stream function is

r
—_— v
’WS‘V dr =2nv Vrii 22y = 2nvz (%. — U)-

]

Consequently

G=2nvzlim(—vn£— U)' (3.3)

N0

Hence, G = « if W(0) = 0, In particular, G = = for Landau's jet, which
can also be obtained directly,

Thus, despite the fact that Schlichring's solution (2. 4) coincides
with Landau’s exact solution for a "strong” jet near the axis, they give
completely different values of G. Therefore, equation (3. 2), which
has been obtained by the unjustified application of (2. 4) to the whole
infinite flow field, is doubtful,

Consider the pioblem of finding a jet flow with a fxmte flow rate

G. We have the necessary condition

W (0) =0.
Assuming in (1. 10) n = 0, we find y(0) = 0, The symmetry of the con~-
ditions with respect to the z = 0 plane allows us to consider the prob-
lem in the region z = 0 only; therefore we use only one of the condi-
tions (2, 1} y(1) = 0, From (1.12) we find

- (3.4

¥ ()= — U0 =—Us,
Assuming x = 0 in (1, 15), we find, taking into account (1.16)
' Ca=Cy =2y (0) = ~ 2U,. ’
Using the condition F(1) = 0, we obtain Cy = 4Ujand .
Flz) = — 20Uy (1 — 29, .9
The solution of (1. 15) is in this case
_ thyIn (1 +z)] .
J—-2U0(1-—x) T (L 9= 55 (3.6, 1)
1 :
for Uol— 5 (x="0RTo+Ya)"),
4z —1
y=—2Uo(1— 3.6.2
sy O
1
for Upg> — 5
In(1+ 1
y—u_z)E—T(;l—(l—_% for Up=—-5. (3.6.3)

From (3. 6) it can be seen that if one regards this flow as a jet
discharging from an opening in a plane wall and:imposes the no-slip
condition U(0) = 0, the problem does not have a solution different
from the trivial solution U= W = 0, However, there are three p0551b1e
physical interpretations of the soiution.

(a) One can regard the solution as representing a jet discharging
from an opening in a wall which is impermeable but "perfectly
smooth, " so that the no-slip condition is inapplicable. Note that
Schlichting's solution, valid over the whole half-space z = 0, corres~
ponds to this case (W(0) = 0, U(0) = 0).

(b) One can regard the flow as produced by a dlpole jet located at
the origin, which consists of two equat jets flowing in opposite direc-
tions,

(c) The flow can be interpreted (for U(0) > 0) as rad1a1 discharge
from a thin tube which lies-on the z axis.' As can be seen from (3.6.1),
flows (a) and (b) are possible only for Ug > U, since the function y’
has poles at Uy < U, = ~7. 67268,

The parameter Uy is related to the momentum of the jet, and
U — 7. 67268 wheri I — «, The relation between 1 and Uj in the -
general case can be calculated numerically and is shown in Fig. 2,

It can be seen that for sufficiently high values of the momentum the
parameter Uy is only weakly dependent on the momentum,

Let us find this relation for the case of the approximate solution
for the "strong™ jet. We shall show that in this case (3. 8) coincides
with Schlichting's solution near the axis. Let us rewrite (3, 6.1) in the
form

L tgabin( + )
y=0+"0 =)y o {bIn{ + 2]

(b= Y20, —1, b=V 20,—1).

Further, let us expand the function y in a series of 1 ~ x and
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by — b and let us take the linear terms of this expansion. The result
is

_ by(1 —z)
¥y =1+ b?) Tyaobe (T—=) F kolbo—1b) *
do=1 4 b, hp= a°]2n2 — 1.

In accordance with (1. 2) and (1. 12), the function v, for a “strong"
jet near its axis is

v z2
v, bokoao (b — b) [Wabe I =5 + s Go— D) ~
. 1 asbo \ aoba £% -2
= ko(b()"—b)]:l T 5 b —~5) TJ . &7

One can easily see that the velocity profile (3, 7) coincides with
Schlichting’s solution (2. 4). Substituting (3. 7) in the formula for the
momentum, we obtain the approximate relation between I and Uy
;= lomv V=20, =1
3 (U Wm2— ) (V=2U,—1— V=201

Equations (3. 8) and (3, 3) determine the relation between the flow
rate in a strong jet and its momentum, For 1 — w the flow rate is
finite. Substituting in (3, 8) Uy = U, = 7. 67268 and taking account of
the fact that for n — 0 equation (1.7) yields lim W/ = W'(0) = 0, we
find G = 15. 345336 7vz. Thus, the value of the flow rate in the

(3.8)

"strong”™ jet is nearly twice as big as that calculated by Schlichting.

In conclusion we note that although a real wall is not “smooth, "
one can nevertheless neglect the effect of the boundary layer at suffi-
ciently large distance away from the wall and can use the above solu-
tion.
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