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The theory of submerged laminar  jets has been treated by 
many authors [1-5] .  This paper presents several new results. 

1. Formulation of  the problem and the basic equation. The 
theory of  submerged jet deals with the self-s imilar  flows of  a vis- 
cous compressible fluid which are due to a singularity, interpreted 
as a point source of  momentum.  These flows satisfy the Navier- 
Stokes equations 

C2, we compare equations (1. 11), (1.14), and (1.15) at x = 0. This 
yields 

C~ ~ C. ,  (1, 16) 

tt should be noted that this relation between the coefficients was missed 
by N. A. Sleztdn, who treated all coefficients on the  right side of  
(1. 15) as independent, 

E l  
(V, ~2) V = - -  ~7 ~- + vAV, div V = 0. (1.1) 

in a cylindrical system of coordinates (r, ~o, z), the similar 
solutions of (1.1) must have the form 

P V 2  

~r = ) -  u ( n ) ,  ~ = ~-w(n), 7 = 7 , -  H on), ~ = ~ _ . ( 1 . 2 )  

The functions v r, v z, p must satisfy the conditions 

v r = V z = p = O  at r = o o  or [ z t - - - - -oo .  

v r := 0, v z ~ bounded, Ov z l O r  = 0 at r = 0 .  (1.3)  

In addition to that, the kinemat ic  momen tum of the jet  

c o  
W z 

I = 2a*.~ r v 2  dr = 2:,v~ -n-an (1.4) 
0 0 

is given. 
SubstitUtion of  (1.2)  in (I. 1) yields the system 

U' (W --  ~]U) - -  U = -= flU' -i- 211 + (t + rl 2) U" + 3qU',  (1.5)  

W '  ( W  - -  flU) - -  U W  = - -  II '  + (t + rl=) W" + 3nW' + W, (1.6)  

w '  = ~ u ' .  (1.7)  

The conditions (1.3)  yield 

g = w = I I = 0  at rl = 5= oo.  (1.8)  

Integrating (1.6)  with respect to ~, we obtain 

II = (l + 112) W '  + ~IW - -  W ( W  - -  ~lU) - -  V2C~, (1.9)  

We introduce the new independent  variable x and the function y, de-  
fined as 

x = ~ (t + ,1~) -'1", y = (W - -  ~IU) (t + q~)-'/-'. (1.10)  

Substituting (1.9) in (1. 5), we obtain 

- -  ( t  - -  x~) ~ y '"  = C~ - -  11~ ( l  - -  x ~) (y~)" - -  x (y~)'  + y~'. ( 1 . 1 1 )  

Taking account  of  (1. 7), we can e~press the functions W and U in 
terms of  y 

U = - -  (l - -  x ~) y' - -  xb~, W ,= (t - -  z~)'/: (y - -  xy ' ) ,  (1 .12)  

v/here the primes denote differentiation with respect to x. Differentia- 
ting (1. 11) and dividing by 1 - x x, we obtain  

- -  (1 - -  x ~) y l V  -r- 4 x y ' "  : :  - -  ',/a (Y~)"' " ( 1 . 1 3 )  

Integrating (1.13) once,  we obtain 

--  ( l  - -  xe) y '"  q- 2 x y "  - - 2 g "  = - -  ~ t z ( y ' - ) " - - C ~ .  ( 1 . 1 4 )  

integrating (1 .14)  twice more, we obtain 

2 ( I  --  z sly" -I- 4 x y - - y ~ = = C ~ x  ~ + C s z  + O ~ =  F ( x ) .  (1 .15)  

Equation (1.15), which is a Riccati 's equation, was first ob-  
.rained by N. A, Slezkin [4]. Using (1.8),  it can be shown that C1 = 0 
(an analogous proof can be found in [6]). To determine the constant 
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2. Certain prol~rties of Landan's solution. L. D. Landau's solu- 
tion [1], 'which he interpreted as the discharge of a jet from an infinite- 
ly thin tube, is associated with the boundary conditions 

y (5= t) = 0.  (2.1)  

It can be easily seen that this requires 

F (5= I) = o .  (2. 2) 

Conditions (2. 2), with equation (L  16), lead to the identities C 2 = 
= Ca = C4 = 0. The solution of (1. 15) is then 

y =  2 . - ~ _  x , (2.3)  

which has  been obtained by Landau. 

If  one disregards relation (1.16), condition (2 .2)  is insufficient 
to determine the constants Cz, C a, C .  and the solution depends then 
not only on y, but also on one other arbi trary parameter .  Such a solu- 
tion, which represents a whole class of  jet flows, has been obtained by 
V, i. Yatseev [5]. The existence of  relation (1. t6)  makes Landau's 
solution unique (V. I. Yatseev shows that of  the whole class of  solu- 
tions in his work only Landau's solution has physical meaning).  

The constant y is uniquely related to the momen tum of the jet 
(y ~ 1 when I ~ * %  

As has been shown by Landau, in the case of  a "strong" jet 
y = 1 + ( 1 / 2 ) a  z, a << 1 his solution coincides with Schlichting's solu- 
t/on [2], obtained by the methods of  boundary. layer  theory. 

8v a 2 64nvz 

r 
= - - .  (2.4) 

g 

Let us analyze Landau's solution. Substituting (2. 3) in the se- 
cond equation in (1.12), we obtain 

2v t [ l q  ~ - - t  1 

Let us regard the variable z in (2. ,5) as constant and determine those 
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values  of r for which 

O~Vz t O~Vz 
8 :  = ~ - - ~ V  = 0 .  (2. 6) 

We introduce the  new v . :  ,able  t = 4J[-%-'~ z and the nota t ion m = 7t and 

n = y-~. Equation (2. 6) becomes  then  

2rn s (m - 4) n ~ + rn ~ (9m z "% 4 m  - l )  n - 

- - 3 ( 5 m  ~ - 4 m  + i )  = O. (2. 7) 
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Equation (2. 7) de te rmines  a function n(m), which has two branches,  

corresponding to the  two roots of the equat ion.  Since y > 1 and t > 1, 

i t  is  in teres t ing  to consider the fol lowing range of  the  var iab les  m and 

n" 1 - m _< ,o; 0 _< n -< 1. One branch of  n(m) i~ a monoton ic  function,  

which decreases  from 1 to 0 as m increases  from 1 to co. The other 

branch is not la rger  than  n = 1 only  in  the range  1 <- m -< ~'-/~. Since 

the values  of n are very close to 1, i t  is convenien t  to introduce the 

v a r i a b l e  s = 1 - n. Equation (2. 7) then  becomes  

2 m ~ ( m - - 4 )  s z - m  2 ( m - i ) ( 4 m  3 - t 2 m  2 - 3 m  + l )  s + 

+ ( m - - t )  4 ( 2 m - 3 )  = O. 

In the range 1 _< m -< ~ the roots of this equat ion can be c lose ly  

approximated  by 

(m - -  1) (4m s - -  i2m 2 - -  3m q- t )  
sl ~ 3m a (ra - -  4) ' 

(m - -  t)a (2m 2 - -  3) 
s~ = ra~(4ma__ t2m2__ 3 m -b 1) 

Knowing the functions Ill and n z, one  can  construct the functions ~tO0 

and ~2(7), which  are shown in Fig. 1. Fig. 1 shows tha t  for y < Ym 

there  are three  va lues  of ~ for every  $, and for y > Ym m e r e  is only  
: one  va lue .  The  va lue  7m can be ca l cu l a t ed  by finding the m a x i m u m  

of  sz(m). Tnis y ie lds  7m = 1.000038. Thus, for 7 > Ym the ve loc i ty  
prof i le  v z has one  point  o f  in f lex ion  (whose ex i s t ence  is due t o t h e  

boundary condit ions) ,  whereas for y < Ym there  appear  two more  points 

of  inf iexinn.  This, accord ing  to the wel l  known Rayle igh ' s  theorem,  is 

a necessary condi t ion for the absolute  ins tab i l i ty  of  the  flow, as for 

Y < Ym one  can  expec t  the je t  to b e c o m e  ntrbulent .  We int roduce the 

Reynolds number  Re for a c i rcu la r  j e t  o f  radius a wi th  a m o m e n t u m  

equa l  to tha t  of  the  point  source: 

i A (• F--A--2 1 '/' I = 2 ~  V o Z r d r = n V o 2 a  z, R e =  v \ n l  = 8 [ . 2 ( ' f - - l ) J  " 
ft 

For ), = 7m we h a v e  Re = t0~0. 
3. On the  e j e c t i o n  c a p a c i t y  of  the j e t .  The e j ec t i on  capac i ty  of 

the j e t  can  be cha rac te r i zed  by the flow ra te  

oo 

G = 2 ~  ~ rv  z d r .  (3 .1)  

0 

Subst i tut ing (2. 4) in (3. 1), we obta in  Schl ich t ing ' s  formula  

C = 8 n v z .  (3. 2) 

Let us c a l c u l a t e  G in its genera l  form. The  s t ream functiofi is 

�9 ~ = 9 ~ t ! r v  d r _  = = 2."iv Wdr =2~v V~z,y=2~vz(Wv-U). 
o o 

Consequently 

G - - - 2 ~ v z l i m ( - ~ - -  U)"  (3 .3)  

Hence, G = .o i f  W(0) ~ 0. In par t icular ,  G = ,G for Landau% jet ,  which 
can also be obtained directly. 

Thus. despite the fact that Schlichring's solution (2. 4) coincides 
with Landau's exact solution for a "strong" jet near the axis, they give 
completely different values of G. Therefore, equation (3.2), which 
has been obtained by the unjustified application Of (2. 4) to the whole 
infinite flow field, is doubtful. 

Consider the problem of finding a jet flow with a finite flow rate 
G. We have  the  necessary condi t ion  

W ( 0 )  = 0 .  (3, 4) 

Assuming in  (1 .10)  ~ = 0, we find y(0) = 0. The symmet ry  of  the con-  

dit ions wi th  respec t  to the  z = 0 p lane  allows us to consider the  prob- 

l em  in the  region z _> 0 only; therefore  we use only  one of  the condi -  

t ions (2. 1)r y(1) = 0. From (1. 12) we find 

y'  ( 0 ) =  - -  u (0) - -  " U , ,  

Assuming x = 0 in  (1.15),  we find, t ak ing  into account  (1. !6),  

C~ = C4 = 2y' (0) = - -  2U~. 

Using the condi t ion  F(1) = O, we obta in  C s = 4U0 and 

F (z) = - -  2Uo ( i  - -  zD. (3, 5) 

The solution of (I. 15) is in this ease 

th  [% l n ( l  - -x ) ]  
y = 2U0 (t  - -  x) th IX in.( l + z)] - -  2Z ( .3.6.1) 

t 
for Uo <- ~- (X = [l&(U0 q-1/2)1'/'), 

( t  + z)~ x - -  l 
Y = - -  2U~ ( i  - -  x) "2 i " i  ' ( 3 . 6 . 2 )  ( X - - ) ( ~ x ) 2 x @ ( 2 x + l )  

i 
for U o >  - -  T '  

In (t + z) l 
y = ( 1 - - x )  2 _ l n ( i q _ a )  for U o =  - - - f .  ( 3 . 6 . 3 )  

From (3 .6)  i t  can  be seen tha t  i f  one regards this  flow as a j e t  

d ischarging from an opening  in  a p lane  wai l  and imposes the no-s l ip  

condi t ion  U(0) = 0, the problem does not have  a solut ion different  

f rom the  t r i v i a l  solut ion U = W = 0. However, there  are  three  possible 

physical  in terpre ta t ions  of  the solut ion.  

(a) One can  regard the solut ion as represent ing a je t  discharging 

from an opening  in a wal l  which is i m p e r m e a b l e  but "perfect ly  

smooth, " so t h a t  the  no-s l ip  condi t ion  is i napp l i cab le .  Note tha t  

Sch l ich t ing ' s  solution,  v a l i d  over  the whole  ha l f - space  z >__ 0, corres- 

ponds to this case (W(0) = 0, U(0) ~ 0). 

(b) One can  regard the  flow as produced by a d i p o l e  j e t  loca ted  at  

the or ig in ,  which consists of  two equa l  jets  f lowing in oppos i t e  d i r ec -  

t ions. 
(c) The  flow can be in terpre ted  (for U(0) > 0) as rad ia l  discharge 

from a th in  tube which l ies  o n  the z ax is .  A s  can be seen from (3,6.1), 

flows (a) and (b) a re  possible only  for U~ > U, ,  ~ince the f imction f 

has  poles at  Uo < U.  = - 7 . 6 7 2 ~ 8 .  

The pa ramete r  U 0 is re la ted  to the m o m e n t u m  of the jet.  and 

U 0 --~ 7. 67268 when I --~ .o. The re la t ion  between I and U 0 in the 
genera l  case  can be ca l cu l a t ed  n u m e r i c a l l y  and is shown in Fig. 2. 

It can be seen tha t  for suff ic ient ly  h igh  values of the m o m e n t u m  the 

paramete r  U 0 is only weakly  dependent  on the m o m e n t u m .  
Let us find this r e l a t ion  for the case  of the  approx ima te  solution 

for the "strong" jet .  We shal l  show tha t  in this case (3. 6) coincides  

wi th  Schl ich t ing ' s  solution near the axis.  Let us rewr i te  (3 .6 .  1) in  me  

form 

�9 tg  p h b l n ( l  § x)] 
y = (1 + b.)( l  - -  ~Jb ~ / r / ~  +-~)1 

(b =- ] / - -  2Ue --,I, bo = ] / - -  2U. -- l ) .  

Further, le t  us expand the fUnction y in a series of  1 -- x and 



J O U R N A L  O F  A P P L I E D  M E C H A N I C S  AND T E C H N I C A L  P H Y S I C S  107 

b 0 - b and let us take the linear terms of this expansion. The result 
is 

bo (t - -  z) 
y = ( t  ~- b O ~ ) ~ ( i r  X ) +ko(bo P 

ao In 2 
ao = l + bo ~, ko= - - ~  i .  

In accordance with (1.2) and (1.12), the function v z for a "strong" 
jet near its axis is 

X 2 

~z ~ T bokoao (b o - -  b) [ff~aobo (1 - -  z) + ko (b2 :-- b)]~ ~ 

" aobo [ aobo ~ l ' ~ .  (3.7) 
z k o ( b 0 - - ~  I ~2k0(bo__b) 4 

One can easily see that the velocity profile (3. 7) coincides with 
Schlichting's solution (2.4). Substituting (3. 7) in the formula for the 
momentum, we obtain the approximate relat2on between I and U e 

t 6 ~  V ~  __.(3. s) 
1 = ~ U .  (-- U, l n 2 - - i ) ( u  V - - 2 U o - - t  

Equations (3. 8) and (3. 3) determine the relation between the flow 
rate in a strong Jet and its momentum. For 1 --~ *~ the flow rate is 
finite. Substituting in (3. 3) U 0 = U. = 7.67268 and taking account of 
the fact tlaat for 77 -* 0 equation (I .  7) yields lira W/O = W'(0) = 0, we 
find G = 15. 345336 irYz. Thus, the value of the fl0w rate in me 

"strong" jet is nearly twice as big as that calculated by Schlichting. 
In conclusion we note that although a real wall is not "smooth, " 

one can nevertheless neglect the effect of the boundary layer at suffi- 
ciently large distance away from the wall and can use the above solu- 

tion. 
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